Isolation Characterization And Compositional Analysis Of Polysaccharides From Pinot Noir Wines An Exploratory Study

Figure 1.The UV–Vis spectra of PNWPs.

Figure 1.The UV–Vis spectra of PNWPs.

Figure 2.The FT-IR spectra of PNWPs.

Figure 2.The FT-IR spectra of PNWPs.

Figure 3.The molecular weight distribution chromatogram of PNWPs (a) and standard curve of dextrans plotted as retention time vs. Log MW (b).

Figure 3.The molecular weight distribution chromatogram of PNWPs (a) and standard curve of dextrans plotted as retention time vs. Log MW (b).

Figure 4.Matrix-assisted laser desorption/ionization-time of flight mass spectrum of the PNWP-L.

Figure 4.Matrix-assisted laser desorption/ionization-time of flight mass spectrum of the PNWP-L.

Figure 5.The methanolysis parameter optimization analysis of lactose. (A) 75 °C/18 h for methanolysis condition, 1. α-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside, 2. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 3. ß-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside, 4. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 5. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside, and 6. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside, 7. α-octakis(trimethylsilyl)-lactose, 8. ß-octakis(trimethylsilyl)-lactose; (B) 80 °C/18 h for methanolysis condition; (C) 85 °C/18 h for methanolysis condition; (D) the surface plot of the peak areas (%) of unmethanolyzed lactose and methanolysis conditions.

Figure 5.The methanolysis parameter optimization analysis of lactose. (A) 75 °C/18 h for methanolysis condition, 1. α-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside, 2. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 3. ß-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside, 4. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 5. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside, and 6. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside, 7. α-octakis(trimethylsilyl)-lactose, 8. ß-octakis(trimethylsilyl)-lactose; (B) 80 °C/18 h for methanolysis condition; (C) 85 °C/18 h for methanolysis condition; (D) the surface plot of the peak areas (%) of unmethanolyzed lactose and methanolysis conditions.

Figure 6.The structure of TMS derivatives corresponded to peaks 1–8 in Figure 5A. Figure 6.The structure of TMS derivatives corresponded to peaks 1–8 in Figure 5A.Figure 7.GC-MS chromatograms of PNWP-L (a) and PNWP-H (b). Peaks: 1. α-methyl 2,3,5-tris-O-(trimethylsilyl)-arabinofuranoside, 2. α-methyl 2,3,4-tris-O-(trimethylsilyl)-arabinopyranoside, 3. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-arabinopyranoside, 4. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-rhamnopyranoside, 5. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-rhamnopyranoside, 6. ß-methyl 2,3,5-tris-O-(trimethylsilyl)-arabinofuranoside, 7. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-fucopyranoside, 8. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-fucopyranoside, 9. α-methyl 2,3,4-tris-O-(trimethylsilyl)-xylopyranoside, 10. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-xylopyranoside, 11. α-methyl 2,3,5-tris-O-(trimethylsilyl)-galactofuranosiduronic acid, 12. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-mannopyranoside, 13. ß-methyl 2,3,5-tris-O-(trimethylsilyl)-galactofuranosiduronic acid, 14. α-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside/α-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-glucofuranoside, 15. ß-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-glucofuranoside, 16. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-mannopyranoside, 17. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 18. ß-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside, 19. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 20. α-methyl 2,3,4-tris-O-(trimethylsilyl)-galactopyranosiduronic acid, 21. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-galactopyranosiduronic acid, 22. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside, 23. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside/α-methyl 2,3,4-tris-O-(trimethylsilyl)-glucopyranosiduronic acid, 24. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-glucopyranosiduronic acid, 25. myo-Inositol (hexakis-O-TMS).

Figure 7.GC-MS chromatograms of PNWP-L (a) and PNWP-H (b). Peaks: 1. α-methyl 2,3,5-tris-O-(trimethylsilyl)-arabinofuranoside, 2. α-methyl 2,3,4-tris-O-(trimethylsilyl)-arabinopyranoside, 3. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-arabinopyranoside, 4. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-rhamnopyranoside, 5. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-rhamnopyranoside, 6. ß-methyl 2,3,5-tris-O-(trimethylsilyl)-arabinofuranoside, 7. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-fucopyranoside, 8. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-fucopyranoside, 9. α-methyl 2,3,4-tris-O-(trimethylsilyl)-xylopyranoside, 10. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-xylopyranoside, 11. α-methyl 2,3,5-tris-O-(trimethylsilyl)-galactofuranosiduronic acid, 12. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-mannopyranoside, 13. ß-methyl 2,3,5-tris-O-(trimethylsilyl)-galactofuranosiduronic acid, 14. α-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside/α-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-glucofuranoside, 15. ß-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-glucofuranoside, 16. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-mannopyranoside, 17. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 18. ß-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside, 19. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 20. α-methyl 2,3,4-tris-O-(trimethylsilyl)-galactopyranosiduronic acid, 21. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-galactopyranosiduronic acid, 22. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside, 23. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside/α-methyl 2,3,4-tris-O-(trimethylsilyl)-glucopyranosiduronic acid, 24. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-glucopyranosiduronic acid, 25. myo-Inositol (hexakis-O-TMS).

Figure 8.The extraction flow chat of PNWPs.

Figure 8.The extraction flow chat of PNWPs.

Table 1.The yield and chemical component analysis of PNWPs.

Table 1.The yield and chemical component analysis of PNWPs.

SamplesYield (g/g) #Protein Content (%)Total Phenolic Content (%)PNWP-L0.240.3% ± 0.1%1.7% ± 0.0%PNWP-H0.415.3% ± 0.4%2.2% ± 0.0%Table 2.The molecular weight distribution (as dextran equivalent) and peak area percentage of PNWPs.

Table 2.The molecular weight distribution (as dextran equivalent) and peak area percentage of PNWPs.

SamplesPeak No.Peak MW (kDa)MW Distribution (kDa)Area Account (%)PNWP-L115.9 ± 0.012–254.926.2 ± 0.05–1295.1PNWP-H166.5 ± 0.325–67072.3216.2 ± 0.012–2522.136.2 ± 0.05–125.6Table 3.The monosaccharide composition of PNWPs.

Table 3.The monosaccharide composition of PNWPs.

Peak No.CompositionMonosaccharide Composition Percentage (%)p Value #PNWP-LPNWP-H1α-Araf1.3 ± 0.0 l8.4 ± 0.1 d*2α-Arap2.4 ± 0.1 i13.1 ± 0.2 c*3ß-Arap1.2 ± 0.0 l6.5 ± 0.1 f*4α-Rhap7.6 ± 0.2 d6.6 ± 0.1 f*5ß-Rhap0.6 ± 0.0 no0.5 ± 0.0 l-6ß-Araf0.5 ± 0.0 o2.4 ± 0.1 h*7α-Fucp0.2 ± 0.0 p0.1 ± 0.0 n-8ß-Fucp-q0.1 ± 0.0 n*9α-Xylp1.0 ± 0.1 m0.2 ± 0.0 mn*10ß-Xylp0.5 ± 0.0 o0.1 ± 0.0 n*11α-GalfA31.8 ± 0.3 a2.1 ± 0.3 i*12α-Manp9.9 ± 0.2 c21.6 ± 0.4 a*13ß-GalfA7.3 ± 0.1 e0.4 ± 0.1 lm*14α-Galf/α-Glcf1.5 ± 0.0 k5.8 ± 0.2 g*15ß-Glcf0.7 ± 0.0 n0.1 ± 0.0 n*16ß-Manp0.9 ± 0.0 m1.2 ± 0.0 k*17α-Galp4.3 ± 0.1 h18.7 ± 0.2 b*18ß-Galf0.5 ± 0.0 o1.6 ± 0.2 j*19ß-Galp1.5 ± 0.0 k6.9 ± 0.1 e*20α-GalpA13.8 ± 0.2 b1.1 ± 0.1 k*21ß-GalpA4.5 ± 0.0 g0.4 ± 0.0 lm*22α-Glcp5.7 ± 0.0 f1.0 ± 0.0 k*23ß-Glcp/α-GlcpA1.9 ± 0.0 j0.5 ± 0.0 l*24ß-GlcpA0.3 ± 0.0 p0.2 ± 0.0 mn-